Publications

  • Zhang D, Dubey J, Koushika SP, Rongo C. 2016. RAB-6.1 and RAB-6.2 Promote Retrograde Transport in C. elegans. PLoS One 11: e0149314 10.1371/journal.pone.0149314
    https://www.ncbi.nlm.nih.gov/pubmed/26891225

  • Khare SM, Awasthi A, Venkataraman V, Koushika SP. 2015. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms. Biomicrofluidics 9: 014111 doi: 10.1063/1.4906905
    https://www.ncbi.nlm.nih.gov/pubmed/25713693

  • Dubey J, Ratnakaran N, Koushika SP. 2015. Neurodegeneration and microtubule dynamics: death by a thousand cuts. Front Cell Neurosci 9: 343 doi: 10.3389/fncel.2015.00343
    https://www.ncbi.nlm.nih.gov/pubmed/26441521

  • Bhambhani C, Ravindranath AJ, Mentink RA, Chang MV, Betist MC, et al. 2014. Distinct DNA binding sites contribute to the TCF transcriptional switch in C. elegans and Drosophila. PLoS Genet 10: e1004133 doi: 10.1371/journal.pgen.1004133
    https://www.ncbi.nlm.nih.gov/pubmed/24516405

  • Mondal S, Koushika SP. 2014. Microfluidic devices for imaging trafficking events in vivo using genetic model organisms. Methods Mol Biol 1174: 375-96 doi: 10.1007/978-1-4939-0944-5_26
    https://www.ncbi.nlm.nih.gov/pubmed/24947396

  • Zheng Q, Ahlawat S, Schaefer A, Mahoney T, Koushika SP, Nonet ML. 2014. The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport. PLoS Genet 10: e1004644 doi: 10.1371/journal.pgen.1004644
    https://www.ncbi.nlm.nih.gov/pubmed/25329901

  • Sonowal R, Nandimath K, Kulkarni SS, Koushika SP, Nanjundiah V, Mahadevan S. 2013. Hydrolysis of aromatic beta-glucosides by non-pathogenic bacteria confers a chemical weapon against predators. Proc Biol Sci 280: 20130721 doi: 10.1098/rspb.2013.0721
    https://www.ncbi.nlm.nih.gov/pubmed/23677347

  • Monteiro MI, Ahlawat S, Kowalski JR, Malkin E, Koushika SP, Juo P. 2012. The kinesin-3 family motor KLP-4 regulates anterograde trafficking of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans. Mol Biol Cell 23: 3647-62 doi: 10.1091/mbc.E12-04-0334
    https://www.ncbi.nlm.nih.gov/pubmed/22855524

  • Fatouros C, Pir GJ, Biernat J, Koushika S.P., Mandelkow E, Mandelkow EM, Schmidt E, Baumeister R., Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Human Molecular Genetics, 2012 Aug, 15; 21(16): 3587-603. Epub 2012 May 1.
    https://www.ncbi.nlm.nih.gov/pubmed/22611162

  • Mondal S, Ahlawat S, Koushika SP. 2012. Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish. J Vis Exp doi: 10.3791/3780.
    https://www.ncbi.nlm.nih.gov/pubmed/23051668

  • Arimoto M, Koushika SP, Choudhary BC, Li C, Matsumoto K, Hisamoto N. 2011. The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. J Neurosci 31: 2216-24 doi: 10.1523/JNEUROSCI.2653-10.2011
    https://www.ncbi.nlm.nih.gov/pubmed/21307258

  • Bhatia D, Surana S, Chakraborty S, Koushika SP, Krishnan Y. 2011. A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat Commun 2: 339 doi: 10.1038/ncomms1337
    https://www.ncbi.nlm.nih.gov/pubmed/21654639

  • Mondal S, Ahlawat S, Rau K, Venkataraman V, Koushika SP. 2011. Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Traffic 12: 372-85 doi: 10.1111/j.1600-0854.2010.01157
    https://www.ncbi.nlm.nih.gov/pubmed/21199219

  • Surana S, Bhat JM, Koushika SP, Krishnan Y. 2011. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat Commun 2: 340 doi: 10.1038/ncomms1340.
    https://www.ncbi.nlm.nih.gov/pubmed/21654640

  • Maniar TA, Kaplan M, Wang GJ, Shen K, Wei L, et al. 2011. UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat Neurosci 15: 48-56 doi: 10.1038/nn.2970
    https://www.ncbi.nlm.nih.gov/pubmed/22101643

  • Murthy K, Bhat JM, Koushika SP. 2011. In vivo imaging of retrogradely transported synaptic vesicle proteins in Caenorhabditis elegans neurons. Traffic 12: 89-101doi: 10.1111/j.1600-0854.2010.01127
    https://www.ncbi.nlm.nih.gov/pubmed/21029289

  • Kumar J, Choudhary BC, Metpally R, Zheng Q, Nonet ML, Ramanathan S., Klopfenstein D. R., Koushika SP, 2010. The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet 6: e1001200doi: 10.1371/journal.pgen.1001200
    https://www.ncbi.nlm.nih.gov/pubmed/21079789

  • Rao GN, Kulkarni SS, Koushika SP, Rau KR. 2008. In vivo nanosecond laser axotomy: cavitation dynamics and vesicle transport. Opt Express 16: 9884-94
    https://www.ncbi.nlm.nih.gov/pubmed/18575558

  • Koushika SP. 2008. "JIP"ing along the axon: the complex roles of JIPs in axonal transport. Bioessays 30: 10-4
    https://www.ncbi.nlm.nih.gov/pubmed/18081006

  • Koushika SP, Schaefer AM, Vincent R, Willis JH, Bowerman B, Nonet ML. 2004. Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J Neurosci 24: 3907-16
    https://www.ncbi.nlm.nih.gov/pubmed/15102906

  • Simmer F, Tijsterman M, Parrish S, Koushika SP, Nonet ML, et al. 2002. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12: 1317-9
    https://www.ncbi.nlm.nih.gov/pubmed/12176360

  • Toba G, Qui J, Koushika SP, White K. 2002. Ectopic expression of Drosophila ELAV and human HuD in Drosophila wing disc cells reveals functional distinctions and similarities. J Cell Sci 115: 2413-21
    https://www.ncbi.nlm.nih.gov/pubmed/12006625

  • Koushika S. P., Richmond J. E.#, Hadwiger G., Weimer R. M., Jorgensen E. M., Nonet M. L., A post-docking role for active zone protein Rim , Nature Neuroscience, Vol. 4, No.10, 997-1005 (2001).
    https://utah.pure.elsevier.com/en/.../a-post-docking-role-for-active-zone-protein-rim #Indicates equal contribution

  • Koushika S. P., Nonet M. L., Sorting and transport in C. elegans: a model system with a sequenced genome , Current Opinion in Cell Biology, Vol. 12, No. 4, 517-523 (2000).
    https://www.ncbi.nlm.nih.gov/pubmed/10873821

  • Koushika S. P., Soller M.#, White K, Neuron-enriched splicing pattern of Drosophila erect wing is dependent on the presence of ELAV protein , Molecular and Cellular Biology, Vol. 20, No. 5, 1836-1845 (2000). #Indicates equal contribution
    www.ncbi.nlm.nih.gov/pubmed/10669758

  • Koushika S. P., Soller M., DeSimone S. M., Daub D. M., White K., Differential and inefficient splicing of a broadly expressed Drosophila erect wing transcript results in tissue-specific enrichment of the vital EWG protein isoform , Molecular and Cellular Biology, Vol. 19, No.6, 3998-4007 (1999).
    https://www.ncbi.nlm.nih.gov/pubmed/10330140

  • Koushika S. P., Lisbin M. J., White K., ELAV a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protien isoform , Current Biology, Vol. 6, No. 12, 1634-1641 (1996).
    https://www.ncbi.nlm.nih.gov/pubmed/8994828