TIFR
Department of Chemical Sciences
School of Natural Sciences

February 18, 2014 at 2.30 pm in AG-69

Title :

Semiconductor Materials for Solar Hydrogen Production Using Water and Abundant Sulfur Compounds

Abstract :

As a clean non-fossil fuel, hydrogen generation by the combination of solar light and semiconductors have drawn great attention as ideal “green” processes for solving global energy and environmental issues. Herein, the recent results of our studies directed to developing semiconducting materials for solar hydrogen production via photodecomposition of water and hydrogen sulfide are presented. Efficient conversion of solar energy to hydrogen via water splitting on photoelectrochemical (PEC) cell is a promising approach. We have developed morphologically modified WO3, doped FeVO4as well as composite CdS/CdSe/ZnS quantum dots decorated titanium dioxide nanotube arrays as photoanode materials, which show significantly improved performances in applications for solar hydrogen generation. The enhancement of photoelectrochemical performances can be attributed to improved electrical conductivities, efficient separation of photoexcited charges and superior charge carrier transport properties of the developed materials. In this talk, hydrogen production from decomposition of H2S using CuAlGaO4as stable and efficient low band gap (1.87 eV) photocatalyst is also presented. Apart from water, H2S which is a toxic gas and produced in large quantities in petroleum refineries has all possibilities for being an alternative source of hydrogen production for both energy and environmental requirements.