TIFR
Department of Chemical Sciences
School of Natural Sciences

Calender

March 5, 2015 at 4.00 pm in AG-80

Title :

Elucidating the Structural Basis of Substrate Recognition by the Proteasomes: A Global Approach

Abstract :

PSMD9, a non-ATPase subunit of the 19S regulatory complex of the 26S proteasome harbours an uncharacterized PDZ-like domain which is well known for protein-protein interaction. PDZ domains interact with C-terminal residues of the interacting partner. In quest for partners of PSMD9, we performed C-terminal tetrapeptide screen representing the C-termini of proteins of human proteome to test the ability of these peptides to bind to PSMD9 and consequently demonstrate that proteins harbouring those C-terminal residues interact with PSMD9. Here, we report that PSMD9 interacts with the C-terminal residues of hnRNPA1, S14, a ligand growth hormone and IL6 receptor via its PDZ-like domain. Studies in our lab have also shown that PSMD9-hnRNPA1 interaction is important for NF-κB signaling. Through homology modeling, docking studies, site directed mutagenesis and simulation, we provide an insight into the probable structure of PDZ domain of PSMD9 and the residues important for the interaction and functions of PSMD9.

March 2, 2015 at 4.00 pm in AG-69

Title :

New Solids having Novel Interfaces with Tunable Properties

Abstract :

 

Ultra-thin atomic layers open a possibility for interacting with individual atoms in a material. At the same time, control over their synthesis, bulk production, large area single crystal synthesis, amenabilities in transfer processesetc. open avenues for engineering them for suitable applications. Recently, development of new solids from interfacing distinct atomic layers received tremendous scientific attention. A new solid from in-plane bond saturated and electronically dissimilaratomic sheets, such as graphene and hexagonal boron nitride (hBN), called van der Waals solids is one such solid where new and unprecedented phenomena are found to be emanating from the interface. This is a paradigm shift in the materials science since these interface induced phenomena are found to be tunable to large extends. Moreover, some of these tunable phenomena at the interfaces are useful in energy harvesting and storage applications. The solids generated by other means of interfacing atomic layers are also found to be excelling in various fields. My talk will be focusing on some of the engineering aspects of 2D materials for various fields.

 

Reference:

 

 1.  Artificially stacked atomic layers: towards new van der Waals solids, Gao et al. Nano Letters, 12, 3518-3525 (2012).Two dimensional materials: Mix and Match”Nature Nanotechnology, doi:10.1038/nnano.2012.139.

 

2.      Engineering photophenomena in large three-dimensional van der Waals heterostructures, Krishna et al. NaturePhysics(Under Review).

 

3.    Cross-linked 3D Graphene Nanoribbon Monolith Electrodes, Vineesh et al. Nanoscale (Under Review).

 

4.   Low Density Three-Dimensional Foam Using Self-reinforced Hybrid Two-Dimensional Atomic Layers, S. Vinod et al. Nature Communications,5, 4541, doi:10.1038/ncomms5541 (2014).

 

5.     Wu et al. A three-dimensionally bonded spongy graphene material with both super compressive elasticity and near-zero Poisson's ratio,Nature Communications (Accepted).

 

 

 

March 2, 2015 at 11.00 a.m. in AG-80

Title :

Metabolic Paradigm of Sleep

Abstract :

Reduced sleep duration is a hallmark of modern-day society and is increasingly associated with medical conditions, such as diabetes, obesity, metabolic syndrome, and cardiovascular disease. Therefore, altered metabolism is a key to understand the processes related to sleep debt and clinical conditions associated to sleep. A metabolomic investigation by our lab has shown significant metabolic alteration in sleep deprived mice compared to baseline metabolic status. Major circulatory lipid component was found to be altered. In addition, we also showed presence of cross-species metabolic markers of sleep debt across rodents and humans. In addition, we also made progress investigating metabolic correlates of brain function during sleep. These results will be discussed in light of the clinical phenotypes of reduced sleep and sleep disorders. 

February 23, 2015 at 4.00 pm in AG-69

Title :

Understanding Amyloid Beta Aggregation in terms of its Distal Folding Contacts

February 16, 2015 at 4.00 pm in AG-69

Title :

Photocatalytic Application of Atomic Layer Deposited (ALD) TiO2 on Fibrous Nano-Silica (KCC-1)

February 12, 2015 at 4.00 pm in AG-80

Title :

Single Molecular Spectroscopy of Single Live Cell

Abstract :

The 2014 Nobel Prize in Chemistry has been awarded for the development of Single Molecule Spectroscopy. We will discuss some recent application of this technique to the study of a single live cell. In a confocal microscope, the size of the focused spot (~200 nm = 0.2 m) is one-hundredth of the dimension of a cell. Thus one can probe different regions/organelles in a cell. Utilizing this, we will describe several new phenomena inside a live cell [1-5]. Specifically, we have discovered found substantial differences between a cancer cell and a normal cell [1-4]. The gold nano-clusters preferentially enter or stain a cancer cell compared to a non-malignant cell [1]. The red-ox processes (thiol-disulfide interconversion) lead to intermittent structural oscillations leading to fluctuations in fluorescence intensity in a single live cell [2-3]. Such oscillations are absent for a cancer cell [2]. The number of lipid droplets are much higher in a cancer cell. We detected stochastic resonance during gene silencing in a cancer cell [5].

References
1.  S. Chattoraj, et al.  "Fluorescent Gold Nano-Cluster inside a Live [UTF-8?]Cell,” J. Phys. Chem. C 118

     (2014, in press).
2.  S. Chattoraj, et al.  "Role of Red-Ox Cycle in Structural Oscillations and Solvation Dynamics in Mitochondria,"

     J. Phys. Chem. B 118 (2014, in press).
3.  S. Ghosh, et al. "Solvation Dynamics and Intermittent Oscillation of a Cell Membrane: " J. Phys. Chem. B 118

     (2014) 2949-2956.  
4.  R. Chowdhury, et al. "Confocal Microscopy of Cytoplasmic Lipid Droplets in a Live Cancer  Cell”

     Med. Chem. Comm. 5 (2014) 536-539.
5.  S. Chattoraj, et al. "Dynamics of Gene Silencing in a Live Cell," J. Phys. Chem. Lett. 5 (2014) 1012-16.

February 9, 2015 at 4.00 pm in AG-69

Title :

Examining Protein Ligand Interactions Using Single Molecule Force Spectroscopy

February 3, 2015 at 2.30 pm in AG-69

Title

Investigations Of Thermal Properties Of Carbon Nanotubes And Metal Oxide Nanomaterials Using Raman Spectroscopy And Molecular Dynamics Simulations

Abstract :

Single-walled carbon nanotubes (SWCNTs) are cylindrical tubes formed from covalently bonded carbon atoms and are described mathematically by performing a rolling operation on the honeycomb planar lattice of a single graphite layer. In the current study, we have examined closely the thermal expansion properties of these quasi one-dimensional objects using experimental Raman spectroscopy and Molecular Dynamics simulations. The Raman measurements have been performed employing a Thermo Scientific DXR spectrometer and a heated cell over a range of temperatures (27-200 deg C), while the Molecular Dynamics simulations utilize the powerful and versatile software package - Large-scale Atomic Molecular Massively Parallel Simulator (LAMMPS). The Raman spectra of the SWCNTs were investigated under thermal loading via two methods, namely laser heating and the externally heated cell, in an effort to demonstrate the bond softening and resultant red-shift of the various Raman features of SWCNTs. In addition, metal oxide nanomaterials can provide insight into the changes in structure and properties that result from the chemisorption of oxygen in the lattice and the way energy is stored in nanomaterials. We have examined the characteristics of graphitic and metal oxide nanomaterials using Resonant Raman Spectroscopy at 514, 532 and 780 nm laser excitations using the DXR Smart Raman spectrometer and a Renishaw inVia Raman Microscope. Computational atomistic analysis of the associated phonon thermodynamics has been performed with the goal of determining the effect that temperature has on the vibrational frequencies of the nanomaterials. In many future applications of graphitic nanomaterials, the electronic devices will have to endure high temperatures during manufacturing and/or operation, whereby the induced strain and thermal expansion characteristics may serve as significant quality/reliability control factors.Intriguing results from both experimental measurements and simulation studies help to shed light on the thermal properties of SWCNTs and metal oxide nanomaterials that have important ramifications for their use in electronic devices.  

 

February 2, 2015 at 4.00 pm in AG-69

Title :

Strategies to Reduce Rate of Charge Recombination

Abstract :

Modulating excitons generated as a result of photoinduced electron transfer in crowded environments is vital for the development of photo-functional materials.1 The hetero-junctions (HJs) in organic photovoltaics are termed as “transport highways” for the charge carriers to the respective electrodes.2Careful design and organization of molecular architectures at the HJs in organic solar cells dictates the fate of excitons generated. Molecular organization relies on interplay between various inter/intra molecular interactions such as multi-pole electrostatic interactions, dispersion and inductive effects, p-p interactions, hydrogen bonding etc. which determines electronic and optical properties associated with these materials. Myriads of models have been proposed in enhancing the survival times of the excitons generated at the HJs. Mullen and co-workers3 substantiated that compromise and dominance of various inter and intra molecular interactions operating in donor (D) - acceptor (A) self-assembled systems could generate segregated D-D/A-A stacks, D-A interdigitating alternate stacks etc. Aida and co-workers4 demonstrated the photochemical generation of spatially separated charge carriers through co-axial nanotubular arrangement of D and A. Wasielewski et al.5extended the survival time of charge separated states through self-assembled D-A tetramers, trefoils, dimers and hydrogen bonded foldamers.Recent report from our group6 demonstrated the importance of supramolecular vesicular scaffold in reducing the rate of charge recombination of the charge separated states.7Recently we are successful in synthesizing near-orthogonal D-A helical and columnar stacks wherein the latter undergo self-assembly in CHCl3 to form spherical aggregates which couldhelp in sustaining the charge transfer intermediates for longer timescales through D-A stacks. The following scheme represents the different models of D-A self-assembled systems reported and under investigation.

References:

1.   Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T.-K.; Mancal, T.; Cheng, Y.-C.; Blankenship, R. E.; Fleming, G. R., Nature 2007,446 (7137), 782-786.

2.   Wang, M.; Wudl, F., J. Mater. Chem. 2012,22 (46), 24297-24314.

3.   (a) Dössel, L. F.; Kamm, V.; Howard, I. A.; Laquai, F.; Pisula, W.; Feng, X.; Li, C.; Takase, M.; Kudernac, T.; De Feyter, S.; Müllen, K., J. Am. Chem. Soc. 2012,134 (13), 5876-5886;(b) Samorì, P.; Fechtenkötter, A.; Reuther, E.; Watson, M. D.; Severin, N.; Müllen, K.; Rabe, J. P., Adv. Mater. 2006,18 (10), 1317-1321;(c) Mativetsky, J. M.; Kastler, M.; Savage, R. C.; Gentilini, D.; Palma, M.; Pisula, W.; Müllen, K.; Samorì, P., Adv. Funct. Mater. 2009,19 (15), 2486-2494.

4.   (a) Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aida, T., Science 2006,314 (5806), 1761-1764;(b) Li, W.-S.; Saeki, A.; Yamamoto, Y.; Fukushima, T.; Seki, S.; Ishii, N.; Kato, K.; Takata, M.; Aida, T., Chem.-Asian J. 2010,5 (7), 1566-1572.

5.   (a) Gunderson, V. L.; Smeigh, A. L.; Kim, C. H.; Co, D. T.; Wasielewski, M. R., J. Am. Chem. Soc. 2012,134 (9), 4363-4372;(b) Lefler, K. M.; Kim, C. H.; Wu, Y.-L.; Wasielewski, M. R., J. Phys. Chem. Lett. 2014,5 (9), 1608-1615;(c) Lefler, K. M.; Co, D. T.; Wasielewski, M. R., J. Phys. Chem. Lett. 2012,3 (24), 3798-3805;(d) Wu, Y.-L.; Brown, K. E.; Wasielewski, M. R., J. Am. Chem. Soc. 2013,135 (36), 13322-13325.

6.   (a) Cheriya, R. T.; Joy, J.; Alex, A. P.; Shaji, A.; Hariharan, M., J. Phys. Chem. C. 2012,116 (23), 12489-12498;(b) Cheriya, R. T.; Nagarajan, K.; Hariharan, M., J. Phys. Chem. C. 2013,117 (7), 3240-3248.

7.             Cheriya, R. T.; Mallia, A. R.; Hariharan, M., Energy Environ. Sci. 2014,7 (5), 1661-1669.

 

January 27, 2015 at 2.30 pm in AG-69

Title :

Design and Development of Chemical Tools and Animal Models for Probing Mn (II) In Vivo

January 21, 2015 at 2.30 pm in AG-80

Title :

Probing the Molecular Basis of Photo-induced Charge Generation in π-Conjugated  Organic Materials for Photovoltaic Applications

January 19, 2015 at 2.30 pm in Guest House Conference Room

Title :

Bio-compatible Probes for Imaging Mn(II) in vivo

 

January 12, 2015 at 4.00 pm in AG-69

Title

Probing Dynamic Solvation of Water Soluble Molecular Cages through Host-Guest CT States

January 6, 2015 at 2.30 pm in AG-69

Title :

Diels-Alderase: Myth or Reality!

Abstract :

The Diels-Alder (DA) reaction is one of the most common types of cycloaddition reaction which leads to the formation of six-membered ring. The DA reaction plays a pivotal role in the synthesis of diverse polymer and natural products. However, the mechanism through which the DA reaction occurs makes it difficult to elucidate experimentally but can be fully addressed in silico. The DA reaction has found its applications in several aspects of chemistry and it has also been proposed as a key transformation in the biosynthesis of many cyclohexene-containing secondary metabolites. For instance, the key step in the biosynthesis of spinosyn A is a DA reaction which converts the putative macrocyclic lactone into the tricyclic compound (Figure 1) which may be catalyzed by an enzyme. In order to confirm this hypothesis, it is mandatory to demonstrate the concertedness of the transition state and thus, the enzyme would be known as Diels-Alderase. We have used computational methods to locate and characterize the transition state by making use of a theozyme, also known as theoretical enzyme.

 

 

 

Figure 1: Cyclisationreaction.

 

This presentation describes the fundamentals of cycloaddition and DA reactions. This is followed by our sustained efforts to understand these reactions using model systems and then culminating to an enzyme-catalysed reaction.