Jets in Colliders

- In a hard process (p-p collision), the emitted quarks and gluons hadronize to produce jets, which are detected in the detectors.

Radiative Emission of partons is also one of the main backgrounds of multijet signal to new physics. So detailed study of the background is also very important.
Jets in Colliders

- In a hard process (p-p collision), the emitted quarks and gluons hadronize to produce jets, which are detected in the detectors.
- The spectrum of the jets contains information about the parton level interaction. Therefore, jet spectrum study is important for the physics study in a hadron collider machine.
In a hard process (p-p collision), the emitted quarks and gluons hadronize to produce jets, which are detected in the detectors. The spectrum of the jets contain information about the parton level interaction. Therefore jet spectrum study is important for the physics study in a hadron collider machine. Radiative Emission of partons is also one of the main backgrounds of multijet signal to new physics. So detailed study of the background is also very important.
In a hard process (p-p collision), the emitted quarks and gluons hadronize to produce jets, which are detected in the detectors.

The spectrum of the jets contain information about the parton level interaction. Therefore jet spectrum study is important for the physics study in a hadron collider machine.

Radiative Emission of partons is also one of the main backgrounds of multijet signal to new physics. So detailed study of the background is also very important.
Jets continued.....

“A Hard” Scattering

proton

underlying event

outgoing parton

outgoing parton

proton

underlying event

initial-state radiation

final-state radiation

A Standard Parton Level Hard Interaction Process
Different Kind Of Jets and Jet Reconstruction

- The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.

- The different algorithms used in CMS for Jet reconstruction are:
 - k_T
 - Anti-k_T
 - IterativeCone
 - Siscone

- The different types of jets analyzed in CMS framework are:
 - Genjet: It is the generator level jet produced from particle level information.
 - Calojet: It is the jet reconstructed from Calorimeter Tower information.
 - Particle Flow (PF) Jet: This is the jet reconstructed directly at the particle level from the different components of the detector, viz. Ecal, HCal, Tracker.
 - Jet Plus Track (JPT) Jet: This is the jet reconstructed from both tracker and calorimeter.
Different Kind Of Jets and Jet Reconstruction

- The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.
- The different algorithm used in CMS for Jet reconstruction are:
 - k_T
 - Anti-k_T
 - IterativeCone
 - Siscone

The different types of jets analyzed in CMS framework are:
- Genjet: It is the generator level jet produced from particle level information.
- Calojet: It is the jet reconstructed from Calorimeter Tower information.
- Particle Flow (PF) Jet: this is the jet reconstructed directly at the particle level from the different components of the detector. viz. Ecal, HCal, Tracker
- Jet Plus Track (JPT) Jet: Its the jet reconstructed from both tracker and calorimeter.
Different Kind Of Jets and Jet Reconstruction

- The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.
- The different algorithm used in CMS for Jet reconstruction are:
 - kT
 - Anti-kT
 - Iterative Cone
 - Siscone

The different types of jets analyzed in CMS framework are:
- Genjet: It is the generator level jet produced from particle level information.
- Calojet: It is the jet reconstructed from Calorimeter Tower information.
- Particle Flow (PF) Jet: this is the jet reconstructed directly at the particle level from the different components of the detector. viz. Ecal, HCal, Tracker
- Jet Plus Track (JPT) Jet: Its the jet reconstructed from both tracker and calorimeter.
Different Kind Of Jets and Jet Reconstruction

- The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.
- The different algorithm used in CMS for Jet reconstruction are:
 - kT
 - Anti-kT
Different Kind Of Jets and Jet Reconstruction

- The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.
- The different algorithm used in CMS for Jet reconstruction are:
 - \(kT\)
 - Anti-\(kT\)
 - IterativiCone

- The different types of jets analyzed in CMS framework are:
 - Genjet: It is the generator level jet produced from particle level information.
 - Calojet: It is the jet reconstructed from Calorimeter Tower information.
 - Particle Flow (PF) Jet: this is the jet reconstructed directly at the particle level from the different components of the detector. viz. Ecal, HCal, Tracker.
 - Jet Plus Track (JPT) Jet: Its the jet reconstructed from both tracker and calorimeter.
The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.

The different algorithm used in CMS for Jet reconstruction are
- kT
- Anti-kT
- IterativeCone
- Siscone

The different types of jets analyzed in CMS framework are
- Genjet: It is the generator level jet produced from particle level information.
- Calojet: It is the jet reconstructed from Calorimeter Tower information.
- Particle Flow (PF) Jet: this is the jet reconstructed directly at the particle level from the different components of the detector, viz. Ecal, HCal, Tracker.
- Jet Plus Track (JPT) Jet: Its the jet reconstructed from both tracker and calorimeter.
The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.

The different algorithm used in CMS for Jet reconstruction are
- k_T
- Anti-k_T
- IterativeCone
- Siscone

The different types of jets analyzed in CMS framework are
- Genjet: It is the generator level jet produced from particle level information.
- Calojet: It is the jet reconstructed from Calorimeter Tower information.
- Particle Flow(PF)Jet: this is the jet reconstructed directly at the particle level from the different components of the detector viz. Ecal, HCal, Tracker
- Jet Plus Track (JPT)Jet: It's the jet reconstructed from both tracker and calorimeter.
The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.

The different algorithm used in CMS for Jet reconstruction are
- kT
- Anti-kT
- IterativiCone
- Siscone

The different types of jets analyzed in CMS framework are
- Genjet: It is the generator level jet produced from particle level information.
- Calojet: It is the jet reconstructed from Calorimeter Tower information.
- Particle Flow (PF) Jet: This is the jet reconstructed directly at the particle level from the different components of the detector viz. Ecal, HCal, Tracker
- Jet Plus Track (JPT) Jet: This is the jet reconstructed from both tracker and calorimeter.
The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.

The different algorithm used in CMS for Jet reconstruction are
- kT
- Anti-kT
- IterativeCone
- Siscone

The different types of jets analyzed in CMS framework are
- Genjet: It is the generator level jet produced from particle level information.
- Calojet: It is the jet reconstructed from Calorimeter Tower information.
- Particle Flow(PF)Jet: this is the jet reconstructed directly at the particle level from the different components of the detector viz. Ecal, HCal, Tracker.
Different Kind Of Jets and Jet Reconstruction

- The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.
- The different algorithm used in CMS for Jet reconstruction are
 - k_T
 - Anti-k_T
 - IterativeCone
 - Siscone
- The different types of jets analyzed in CMS framework are
 - Genjet: It is the generator level jet produced from particle level information.
 - Calojet: It is the jet reconstructed from Calorimeter Tower information.
 - Particle Flow(PF)Jet: this is the jet reconstructed directly at the particle level from the different components of the detector viz. Ecal, HCal, Tracker
 - Jet Plus Track (JPT)Jet: Its the jet reconstructed from both tracker and calorimeter.
The main inputs in Jet reconstruction are Jet cone size and Jet Algorithm.

The different algorithm used in CMS for Jet reconstruction are
- kT
- Anti-kT
- IterativiCone
- Siscone

The different types of jets analyzed in CMS framework are
- Genjet: It is the generator level jet produced from particle level information.
- Calojet: It is the jet reconstructed from Calorimeter Tower information.
- Particle Flow(PF)Jet: this is the jet reconstructed directly at the particle level from the different components of the detector viz. Ecal, HCal, Tracker
- Jet Plus Track (JPT)Jet: Its the jet reconstructed from both tracker and calorimeter.
A Typical Leading Jet E_T Distribution (GenJet) (p_t bin 800-1000)
The Same Plot With Corresponding CaloJet E_T
The previous two plots show that a typical spectrum of a reconstructed jet from detector, doesn’t match with the corresponding generator level jet. Hence we need Jet Energy Correction (JEC).
The previous two plots show that a typical spectrum of a reconstructed jet from detector, doesn’t match with the corresponding generator level jet. Hence we need Jet Energy Correction (JEC).

The goal of JEC is to relate on average, the spectrum \((E_T, \eta, \phi...) \) measured at the detector to the spectrum of a hard scattered parton in the final state process.
The previous two plots show that a typical spectrum of a reconstructed jet from detector, doesn’t match with the corresponding generator level jet. Hence we need Jet Energy Correction (JEC).

The goal of JEC is to relate on average, the spectrum \((E_T, \eta, \phi) \) measured at the detector to the spectrum of a hard scattered parton in the final state process.
CMS is developing a factorized multi-level jet correction in which the correction is applied in the following sequence:

- **Offset:** Required correction for pile-up and electronic noise.
- **Relative (η):** Required correction for variation in jet response with pseudorapidity (η) relative to a control region.
- **Absolute (p_T):** Required correction to particle level versus jet p_T in the control region.
- **EMF:** Optional correction for variations in jet response with electromagnetic energy fraction.
- **Flavour:** Optional correction to particle level for different types of jets (light quark, c, b, gluon).
- **Underlying Event:** Optional correction for underlying event energy.
- **Parton:** Optional correction to parton level.
CMS is developing a factorized multi-level jet correction in which the correction is applied in the following sequence:

- **Offset**: Required correction for pile-up and electronic noise.

- **Relative (\(\eta\))**: Required correction for variation in jet response with pseudorapidity (\(\eta\)) relative to a control region.

- **Absolute (\(p_T\))**: Required correction to particle level versus jet \(p_T\) in the control region.

- **EMF**: Optional correction for variations in jet response with electromagnetic energy fraction.

- **Flavour**: Optional correction to particle level for different types of jets (light quark, c, b, gluon).

- **Underlying Event**: Optional correction for underlying event energy.

- **Parton**: Optional correction to parton level.
CMS is developing a factorized multi-level jet correction in which the correction is applied in the following sequence:

- **Offset**: Required correction for pile-up and electronic noise.
- **Relative(\(\eta\))**: Required correction for variation in jet response with pseudorapidity(\(\eta\)) relative to a control region.
- **Absolute \((p_T)\)**: Required correction to particle level versus jet \(p_T\) in the control region.
- **EMF**: Optional correction for variations in jet response with electromagnetic energy fraction.
- **Flavour**: Optional correction to particle level for different types of jets (light quark, c, b, gluon).
- **Underlying Event**: Optional correction for underlying event energy.
- **Parton**: Optional correction to parton level.
CMS is developing a factorized multi-level jet correction in which the correction is applied in the following sequence:

- Offset: Required correction for pile-up and electronic noise.
- Relative(η): Required correction for variation in jet response with pseudorapidity(η) relative to a control region.
- Absolute (p_T): Required correction to particle level versus jet p_T in the control region.
- EMF: Optional correction for variations in jet response with electromagnetic energy fraction.
- Flavour: Optional correction to particle level for different types of jets (light quark, c, b, gluon).
- Underlying Event: Optional correction for underlying event energy.
- Parton: Optional correction to parton level.
CMS is developing a factorized multi-level jet correction in which the correction is applied in the following sequence:

- **Offset**: Required correction for pile-up and electronic noise.
- **Relative (η)**: Required correction for variation in jet response with pseudorapidity (η) relative to a control region.
- **Absolute (p_T)**: Required correction to particle level versus jet p_T in the control region.
- **EMF**: Optional correction for variations in jet response with electromagnetic energy fraction.

- **Flavour**: Optional correction to particle level for different types of jets (light quark, c, b, gluon).
- **Underlying Event**: Optional correction for underlying event energy.
- **Parton**: Optional correction to parton level.
CMS is developing a factorized multi-level jet correction in which the correction is applied in the following sequence:

- **Offset**: Required correction for pile-up and electronic noise.
- **Relative (η)**: Required correction for variation in jet response with pseudorapidity (η) relative to a control region.
- **Absolute (p_T)**: Required correction to particle level versus jet p_T in the control region.
- **EMF**: Optional correction for variations in jet response with electromagnetic energy fraction.
- **Flavour**: Optional correction to particle level for different types of jets (light quark, c, b, gluon).
Multi Level Jet Correction

- CMS is developing a factorized multi-level jet correction in which the correction is applied in the following sequence:

 - Offset: Required correction for pile-up and electronic noise.
 - Relative(\(\eta\)): Required correction for variation in jet response with pseudorapidity(\(\eta\)) relative to a control region.
 - Absolute(\(p_T\)): Required correction to particle level versus jet \(p_T\) in the control region.
 - EMF: Optional correction for variations in jet response with electromagnetic energy fraction.
 - Flavour: Optional correction to particle level for different types of jets (light quark, c, b, gluon).
 - Underlying Event: Optional correction for underlying event energy.
CMS is developing a factorized multi-level jet correction in which the correction is applied in the following sequence:

- **Offset**: Required correction for pile-up and electronic noise.
- **Relative (η)**: Required correction for variation in jet response with pseudorapidity (η) relative to a control region.
- **Absolute (p_T)**: Required correction to particle level versus jet p_T in the control region.
- **EMF**: Optional correction for variations in jet response with electromagnetic energy fraction.
- **Flavour**: Optional correction to particle level for different types of jets (light quark, c, b, gluon).
- **Underlying Event**: Optional correction for underlying event energy.
- **Parton**: Optional correction to parton level.
CMS is developing a factorized multi-level jet correction in which the correction is applied in the following sequence:

- **Offset**: Required correction for pile-up and electronic noise.
- **Relative (η)**: Required correction for variation in jet response with pseudorapidity (η) relative to a control region.
- **Absolute (p_T)**: Required correction to particle level versus jet p_T in the control region.
- **EMF**: Optional correction for variations in jet response with electromagnetic energy fraction.
- **Flavour**: Optional correction to particle level for different types of jets (light quark, c, b, gluon).
- **Underlying Event**: Optional correction for underlying event energy.
- **Parton**: Optional correction to parton level.
Jet Correction Formula

\[E_{jet}^{Corr} = (E_{jet}^{Raw} - E_{offset}) \times C(\text{rel} : \eta) \times C(\text{abs} : p_T) \]

- For our current analysis we use the three corrections L2L3residual correction.
We use the LOOSE jet identification criteria to reject the fake jets during jet collection.
Jet-Id used

- We use the LOOSE jet identification criteria to reject the fake jets during jet collection.
- The Jet-Id for the calorimeter jets are
 - $n_{90\text{hit}} \geq 1$ for the region HBHE
 - EM-fraction ≥ 0.01
 - $f_{HPD} \leq 0.98$
- The Jet-Id for the particle-flow jets are
 - Neutral Hadron Fraction ≤ 0.99
 - Neutral EM Fraction ≤ 0.99
 - Number of Constituents ≥ 1
 - $|\eta| \leq 2.4$ in addition apply
 - Charged Hadron Fraction ≥ 0
 - Charged Multiplicity ≥ 0
 - Charged EM Fraction ≤ 0.99
Jet-Id used

- We use the LOOSE jet identification criteria to reject the fake jets during jet collection.

- The Jet-Id for the calorimeter jets are
 - \(n90hit \geq 1 \) for the region HBHE

- The Jet-Id for the particle-flow jets are
 - Neutral Hadron Fraction \(\leq 0.99 \)
 - Neutral EM Fraction \(\leq 0.99 \)
 - Number of Constituents \(\geq 1 \)
 - \(|\eta| \leq 2.4 \).
 - In addition apply
 - Charged Hadron Fraction \(\geq 0 \)
 - Charged Multiplicity \(\geq 0 \)
 - Charged EM Fraction \(\leq 0.99 \)
Jet-Id used

- We use the LOOSE jet identification criteria to reject the fake jets during jet collection.
- The Jet-Id for the calorimeter jets are
 - $n_{90hit} \geq 1$ for the region HBHE
 - EM-fraction ≥ 0.01
- The Jet-Id for the particle-flow jets are
 - Neutral Hadron Fraction ≤ 0.99
 - Neutral EM Fraction ≤ 0.99
 - Number of Constituents ≥ 1
 - $|\eta| \leq 2.4$ in addition apply
 - Charged Hadron Fraction ≥ 0
 - Charged Multiplicity ≥ 0
 - Charged EM Fraction ≤ 0.99
We use the LOOSE jet identification criteria to reject the fake jets during jet collection.

The Jet-Id for the calorimeter jets are
- \(n_{90\text{hit}} \geq 1 \) for the region HBHE
- EM-fraction \(\geq 0.01 \)
- \(f_{\text{HPD}} \leq 0.98 \)

The Jet-Id for the particle-flow jets are
- Neutral Hadron Fraction \(\leq 0.99 \)
- Neutral EM Fraction \(\leq 0.99 \)
- Number of Constituents \(\geq 1 \)
- \(|\eta| \leq 2.4\) in addition apply
- Charged Hadron Fraction \(\geq 0 \)
- Charged Multiplicity \(\geq 0 \)
- Charged EM Fraction \(\leq 0.99 \)
Jet-Id used

- We use the LOOSE jet identification criteria to reject the fake jets during jet collection.
- The Jet-Id for the calorimeter jets are
 - $n_{90hit} \geq 1$ for the region HBHE
 - EM-fraction ≥ 0.01
 - $f_{HPD} \leq 0.98$
- The Jet-Id for the particle-flow jets are
We use the LOOSE jet identification criteria to reject the fake jets during jet collection.

The Jet-Id for the calorimeter jets are
- \(n_{90\text{hit}} \geq 1 \) for the region HBHE
- \(\text{EM-fraction} \geq 0.01 \)
- \(f_{\text{HPD}} \leq 0.98 \)

The Jet-Id for the particle-flow jets are
- Neutral Hadron Fraction \(\leq 0.99 \)
Jet-Id used

- We use the LOOSE jet identification criteria to reject the fake jets during jet collection.

- The Jet-Id for the calorimeter jets are
 - $n_{90\text{hit}} \geq 1$ for the region HBHE
 - EM-fraction ≥ 0.01
 - $f_{\text{HPD}} \leq 0.98$

- The Jet-Id for the particle-flow jets are
 - Neutral Hadron Fraction ≤ 0.99
 - Neutral EM Fraction ≤ 0.99
Jet-Id used

- We use the LOOSE jet identification criteria to reject the fake jets during jet collection.
- The Jet-Id for the calorimeter jets are
 - $n_{90\text{hit}} \geq 1$ for the region HBHE
 - $\text{EM-fraction} \geq 0.01$
 - $f_{\text{HPD}} \leq 0.98$
- The Jet-Id for the particle-flow jets are
 - Neutral Hadron Fraction ≤ 0.99
 - Neutral EM Fraction ≤ 0.99
 - Number of Constituents ≥ 1
Jet-Id used

- We use the LOOSE jet identification criteria to reject the fake jets during jet collection.

- The Jet-Id for the calorimeter jets are
 - $n_{90\text{hit}} \geq 1$ for the region HBHE
 - EM-fraction ≥ 0.01
 - $f_{\text{HPD}} \leq 0.98$

- The Jet-Id for the particle-flow jets are
 - Neutral Hadron Fraction ≤ 0.99
 - Neutral EM Fraction ≤ 0.99
 - Number of Constituents ≥ 1
 - And for $|\eta| \leq 2.4$ in addition apply
 - Charged Hadron Fraction ≥ 0
Jet-Id used

- We use the LOOSE jet identification criteria to reject the fake jets during jet collection.

- The Jet-Id for the calorimeter jets are:
 - $n_{90\text{hit}} \geq 1$ for the region HBHE
 - $\text{EM-fraction} \geq 0.01$
 - $f_{\text{HPD}} \leq 0.98$

- The Jet-Id for the particle-flow jets are:
 - Neutral Hadron Fraction ≤ 0.99
 - Neutral EM Fraction ≤ 0.99
 - Number of Constituents ≥ 1
 - And for $|\eta| \leq 2.4$ in addition apply
 - Charged Hadron Fraction ≥ 0
 - Charged Multiplicity ≥ 0
Jet-Id used

- We use the LOOSE jet identification criteria to reject the fake jets during jet collection.

- The Jet-Id for the calorimeter jets are
 - \(n_{90\text{hit}} \geq 1 \) for the region HBHE
 - EM-fraction \(\geq 0.01 \)
 - \(f_{\text{HPD}} \leq 0.98 \)

- The Jet-Id for the particle-flow jets are
 - Neutral Hadron Fraction \(\leq 0.99 \)
 - Neutral EM Fraction \(\leq 0.99 \)
 - Number of Constituents \(\geq 1 \)
 - And for \(|\eta| \leq 2.4 \) in addition apply
 - Charged Hadron Fraction \(\geq 0 \)
 - Charged Multiplicity \(\geq 0 \)
 - Charged EM Fraction \(\leq 0.99 \)
The Data and MC samples

- The MC samples taken for study:
The Data and MC samples

The MC samples taken for study:
• /QCDPt-50to80-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-80to120-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-120to170-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-170to300-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-300to470-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-470to600-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-600to800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
The MC samples taken for study:

- /QCDPt-50to80-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-80to120-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-120to170-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-170to300-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-300to470-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-470to600-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-600to800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
The Data and MC samples

The MC samples taken for study:

- /QCD-Pt-50to80-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-80to120-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-120to170-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-170to300-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-300to470-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-470to600-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-600to800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
The Data and MC samples

- The MC samples taken for study:
 - /QCD-Pt-50to80-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-80to120-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-120to170-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-170to300-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-300to470-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-470to600-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-600to800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
The Data and MC samples

- The MC samples taken for study:
 - `/QCDPt-50to80-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM`
 - `/QCD-Pt-80to120-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM`
 - `/QCD-Pt-120to170-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM`
 - `/QCD-Pt-170to300-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM`
 - `/QCD-Pt-300to470-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM`
The Data and MC samples

- The MC samples taken for study:
 - /QCDPt-50to80-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-80to120-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-120to170-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-170to300-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-300to470-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-470to600-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
The Data and MC samples

- The MC samples taken for study:
 - /QCD-Pt-50to80-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-80to120-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-120to170-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-170to300-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-300to470-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-470to600-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
 - /QCD-Pt-600to800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
The Data and MC samples

• continued ..
The Data and MC samples

continued ..

• /QCD-Pt-800to1000-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-1000to1400-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-1400to1800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-1800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
The Data and MC samples

• /QCD-Pt-800to1000-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-1000to1400-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-1400to1800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
• /QCD-Pt-1800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM

continued ..
continued ..

- \(/\text{QCD-Pt-800to1000-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM} \)
- \(/\text{QCD-Pt-1000to1400-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM} \)
- \(/\text{QCD-Pt-1400to1800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM} \)
The Data and MC samples

continued ..

- /QCD-Pt-800to1000-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-1000to1400-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-1400to1800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM
- /QCD-Pt-1800-TuneZ2-7TeV-pythia6/Spring11-PU-S3-START311-V1G1-v1/AODSIM

Dataset:/Jet/Run2011A-PromptReco-v2/AOD
E_T Distribution of 1st CaloJet

E_T of 1st-Calo-Jet-MC $p_T \leq 170$ GeV
E_T of 1st Calo-Jet-MC $p_T \geq 170$ GeV

E_T Distribution of 1st CaloJet
E_T Distribution of 2nd CaloJet
E_T of 2nd-Calo-Jet-MC $p_T \geq 170$ GeV

E_T Distribution of 2nd CaloJet
η of 1st-Calo-Jet-MC $p_T \leq 170$ GeV
η of 1st Calo-Jet-MC $p_T \geq 170$ GeV

η Distribution of 1st CaloJet
η of 2nd-CalogenJet-MC $p_T \leq 170$ GeV

η Distribution of 2nd CaloJet
η of 2nd-Calo-Jet-MC $p_T \geq 170$ GeV

η Distribution of 2nd CaloJet
E_T Distribution of 1st PFJet

E_T of 1st-PF-Jet-MC $p_T \leq 170$ GeV
E_T of 1st-PF-Jet-MC $\hat{p}_T \geq 170$ GeV

E_T Distribution of 1st PFJet
E_T Distribution of 2nd PFJet
E_T of 2nd-PF-Jet-MC $p_T \geq 170$ GeV

E_T Distribution of 2nd PFJet
η of 1st-PF-Jet-MC $p_T \leq 170$ GeV

η Distribution of 1st PFJet
\[\eta \text{ of 1st-PF-Jet-MC } \hat{p}_T \geq 170 \text{ GeV} \]
η Distribution of 2nd PFJet

η of 2nd-PF-Jet-MC $p_T \leq 170$ GeV
η of 2nd-PF-Jet-MC $p_T \geq 170$ GeV

η Distribution of 2nd PFJet
MDijet-MC $p_T \leq 170$ GeV

Dijet Invariant Mass Of Two Leading Jets
Azimuthal Angle Between Two Leading Jets
Azimuthal Angle Between Two Leading Jets
Comparison Of Jets $p_T \leq 170$ GeV

E_T and η Comparison Of Gen-Calo-PF Jets
Comparison Of Jets $p_T \geq 170$ GeV

E_T and η Comparison Of Gen-Calo-PF Jets
Calojet Response

Graph

1st-Calo |η|<1.3

1st-Calo |η|>1.3

2nd-Calo |η|<1.3

2nd-Calo |η|>1.3

Jet Response For CaloJets
Trigger Turn On Curve

Sanmay Ganguly Department Of High Energy Physics Tata Institute Of Fundamental Research

Jet Study In CMS Detector

June 7, 2011 36 / 51
Our current physics goal is to measure the value of strong coupling constant α_s from 2010 and 2011 data.

We plan to study the inclusive jet E_T spectrum and extract the value of α_s.

The basic equation for extracting α_s is

$$\frac{d\sigma}{dE_T} = \alpha_s^2(\mu_R)\hat{X}^{(0)}(\mu_F, E_T)[1 + \alpha_s(\mu_R)k_1(\mu_R, \mu_F, E_T)]$$

$\frac{d\sigma}{dE_T}$ is the transverse energy distribution of the inclusive jets.

μ_R, μ_F, related to E_T by a scale factor, are the renormalization and factorization scale respectively.

$\alpha_s^2(\mu_R)\hat{X}^{(0)}(\mu_F, E_T)$ is the leading order (LO) prediction of the inclusive jet cross section and $\alpha_s^3(\mu_R)\hat{X}^{(0)}(\mu_F, E_T)k_1(\mu_R, \mu_F, E_T)$ is the next to leading order (NLO) prediction.
We will also carry out the same exercise from different MC (both LO and NLO) and try to fit the observed running of α_s

The effect due to pile-up and angular resolution is going to be studied.

The analysis is going to be done for both high and low p_t bins

Data driven study is going to be made for Jet Energy Response using $\gamma+$Jet and $Z+$jet events.

We will also carry out the same exercise from different MC (both LO and NLO) and try to fit the observed running of α_s
I thank Seema Sharma, Anirban Saha, Devdutta Mazumdar and Rajdeep Chatterjee for helpful discussion over several times.
E_T of 1st Calo-Jet-Data

E_T Distribution of 1st CaloJet
E_T of 2nd-Calo-Jet-Data

E_T Distribution of 2nd CaloJet
η of 1st-Calo-Jet-Data

η Distribution of 1st CaloJet

Sanmay Ganguly Department Of High Energy Physics Tata Institute Of Fundamental Research

Jet Study In CMS Detector

June 7, 2011 44 / 51
\(\eta \) of 2nd-Calo-Jet-Data

\[\eta \text{ Distribution of 2nd CaloJet}\]
E_T Distribution of 1st PFJet

Sanmay Ganguly Department Of High Energy
Jet Study In CMS Detector
E_T Distribution of 2nd PFJet
η Distribution of 1st PFJet
\(\eta \) of 2nd-PF-Jet-Data

\[\eta \text{ Distribution of 2nd PFJet} \]
MDijet-Data

Jet Study In CMS Detector

June 7, 2011
Azimuthal Angle Between Two Leading Jets