High spin polarization in the ferromagnetic filled skutterudites KFe$_4$Sb$_{12}$ and NaFe$_4$Sb$_{12}$

1Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
2Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
3Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands

(Received 23 July 2005; revised manuscript received 11 October 2005; published 28 November 2005)

Electronic devices based upon spin control (spintronics) and materials with a high degree of spin polarization, e.g., half-metallic ferromagnets, have evolved as topics of particular attention in recent years. Independently, the filled skutterudite compounds, AM$_4$X$_{12}$ (M is a transition metal, X a pnictide), have become materials of vast possibilities. These compounds can be synthesized with a variety of filler elements, A, ranging from sodium spanning the alkaline and rare earths, to the actinides. Usually, the transition metal site (Fe, Ru or Os) is nonmagnetic. The lattice parameter of these cubic compounds can be increased systematically by proceeding from P to Sb and from Fe to Os, thereby generating such diverse behavior as unconventional superconductivity, quantum and correlated electron magnetism and large thermoelectric effects, the latter initiating the interest in these materials.

Particular interesting examples are the filled skutterudites with iron-antimony host. Here, the magnetic properties are governed by the charge of the filler ion, especially if it is nonmagnetic, e.g., Na$^+$, Ca$^{2+}$, La$^{3+}$. Surprisingly, the compounds containing monovalent cations are ferromagnetic. In our prior work we have evidenced that the Na and K compounds are weak itinerant ferromagnets with a Curie temperature $T_C\approx$85 K where a clear magnetic phase transition is observed in all bulk properties. Previous band-structure calculations within the local spin-density approximation (LSDA) for NaFe$_4$Sb$_{12}$ predicted a spin–split density of states at almost perfect half-metallic behavior. Compositions with divalent fillers (e.g., CaFe$_4$Sb$_{12}$) are nearly ferromagnetic metals, i.e., they do not show ferromagnetism. Yet, they exhibit large paramagnetic susceptibilities or Stoner factors and Sommerfeld-Wilson ratios $R_{SW}\approx 24$.10-12

In this paper, we present point-contact Andreev reflection (PCAR) measurements conducted on KFe$_4$Sb$_{12}$ and NaFe$_4$Sb$_{12}$ samples to verify the theoretical prediction. In addition, we present detailed band-structure calculations, including the Fermi surface and Fermi velocities. From the combination of PCAR measurements and LSDA calculation we not only infer a remarkably high degree of transport spin polarization $P_s\approx 67\%$, which is a key parameter in spintronics applications. But we can also unambiguously relate this to a high density of states in the metallic channel that protects the spin polarization in these materials against detrimental influences of scattering. This certainly makes KFe$_4$Sb$_{12}$ and NaFe$_4$Sb$_{12}$ interesting candidates for spectroscopic investigations. Obviously, these two compounds present a class of materials that exhibit a large degree of spin polarization and itinerant electron magnetism with a rather high T_C.

Polycrystalline samples of KFe$_4$Sb$_{12}$ and NaFe$_4$Sb$_{12}$ along with CaFe$_4$Sb$_{12}$ as a nonferromagnetic reference material were prepared and characterized as described previously. Powdered samples were compacted by spark plasma sintering (SPS) at pressures of 600 MPa in an argon atmosphere. All experiments were conducted on pieces cut from the same batches. A polished surface of the KFe$_4$Sb$_{12}$ sample shows an average grain size of $\approx 15 \mu m^2$. The electrical resistivities $\rho(300 \text{ K})$ range between 220 and 530 $\mu \Omega \text{ cm}$. As the achieved density of these sintered materials may slightly vary, the residual resistivities are sample dependent. Nonetheless, the values of ρ are similar to those of AFe$_4$Sb$_{12}$ samples with A=Ca, Sr, Ba prepared by the same method. The common feature in all $\rho(T)$ curves is a shoulder around 70–80 K which is a fingerprint of carriers scattering on spin fluctuations. On top of this a tiny kink at \approx85 K signals the ferromagnetic ordering of the Na and the K compound. The ferromagnetic state of Na and KFe$_4$Sb$_{12}$ is characterized by a small remanent magnetization $M_r/\text{Fe atom} = 0.25 \mu_B$ at 1.8 K. Hysteresis curves are already closed at 10 kOe. However, the magnetization keeps increasing up to the maximum applied field ($M/\text{Fe atom} = 0.60 \mu_B$ at 140 kOe) indicating the strong spin fluctuations in these ferromagnets. Interestingly, the K and Na compounds exhibit almost identical properties.

The point-contact Andreev reflection measurements were performed at 2.8 K in a liquid He continuous flow cryostat. The samples were polished with very fine emery paper to a mirror finish and immediately loaded for experiments to avoid surface degradation. Mechanically cut sharp Nb or Pb
tips were engaged on the samples by a differential screw arrangement to establish contacts of minimum size. Differential conductance $G(V)$ versus voltage V characteristics of the contact were obtained using a lock-in modulation technique at 372 Hz. The typical resistance of the contacts in the normal state varied between 10–20 Ω.

In Fig. 1 we show four representative spectra with various combinations of ferromagnetic samples and superconducting tips. The transport spin polarization P_t was extracted from the spectra by fitting a Blonder-Tinkham-Klapwijk (BTK) theory modified to incorporate the effect of spin polarization. The vast majority of spectra were analyzed using three fitting parameters, namely P_t, the superconducting energy gap Δ, and the barrier parameter Z that characterizes the strength of the potential barrier at the interface. While modeling the spectra, Δ was kept within 10% of its bulk value for the given superconductors. For a small number of spectra we added to Δ a small broadening parameter, $\Gamma\sim0.1–0.2$ meV, for fine corrections to the fits. However, no Γ was required for fitting the spectra with low Z values (as, e.g., those presented in Fig. 1) that is representative of the intrinsic spin polarization. Note that the comparatively low Z values of these spectra ensure a good quality of the fits and have the highest impact on the extrapolated intrinsic P_t values.

Figure 2 shows the variation of the extracted values of P_t, as a function of the barrier parameter Z. P_t decreases with increasing Z, a behavior that has been observed earlier in a variety of ferromagnets and is believed to arise from spin depolarization at a magnetically disordered scattering barrier formed at the interface. The intrinsic value of P_t is therefore extracted by linearly extrapolating the P_t vs Z curve to $Z=0$. The consistency of this procedure is easily seen in the case of NaFe$_4$Sb$_{12}$: measurements carried out with both Pb and Nb tips result in the same value of the intrinsic spin polarization (within experimental errors), though the decay of P_t with Z is different for the two cases due to differences in the nature of the interfaces. The intrinsic value of P_t extracted in this way is 67% for KFe$_4$Sb$_{12}$, and 60% for NaFe$_4$Sb$_{12}$. We note that PCAR measurements were also conducted on NaFe$_4$Sb$_{12}$, the structurally closest but nonferromagnetic homologue to the compounds of interest here. As expected we found $P_t=0$ for all fitting attempts using NaFe$_4$Sb$_{12}$. This result constitutes a consistency check with respect to the P_t values as extracted from the PCAR measurements.

To gain further insight into the electronic structure of these materials on a microscopic level, a full-potential nonorthogonal local-orbital calculation scheme (FPLO) (Ref. 23) within the LSDA was utilized. In the scalar-relativistic calculations the exchange and correlation potential of Perdew and Wang24 was used. As the basis set, Na(2s,2p,3s,3p,3d), K(3s,3p,4s,4p,3d), Fe(3s,3p,4s,4p,3d), and Sb(4s,4p,4d,5s,5p,5d) states were employed. The lower-lying states were treated fully relativistically as core states. The Na- and K-3d states as well as the Sb-5d states were taken into account as polarization states to increase the completeness of the basis set. The treatment of the Na(2s,2p), K(3s,3p), Fe(3s,3p), and Sb(4s,4p,4d) semi-core-like states as valence states was necessary to account for non-negligible core-core overlaps. The spatial extension of the basis orbitals, controlled by a confining potential $(r/r_0)^4$ was optimized to minimize the total energy. For self-consistency, a fine k mesh of 1256 points in the irreducible part of the Brillouin zone (27 000 in the full zone) was used. To ensure accurate density of states (DOS) and band-structure information, especially to obtain smooth Fermi surfaces and reliable Fermi velocities, a k mesh of 1 000 000 points was used in a final step.

Our band-structure calculations result in a ferromagnetic ground state for KFe$_4$Sb$_{12}$ with a nearly integer magnetic moment of 2.98 μ_B per formula unit. The states in the spin-
spin-down channel

HIGH SPIN POLARIZATION IN THE FERROMAGNETIC...

imperative to bear in mind that in addition to the DOS at

Sb-5

relevance at

Sb-5/H20849

polarized DOS at the Fermi level

pure Fe-3/H20849

assigned mainly to two bands

E

Fermi surfaces for KFe4Sb12.

band numbers are according to the basis set provided in the text

F

right

E

left

DOS resolved for the individual bands

Total DOS and partial Fe-3

d character crossing

see Fig. 3

Due to its high value of

Pn

measurements it is

Pn

0 =99.6%, a value very similar to the one re-

ported for the isovalent Na compound.10 In the case of ele-

tronic transport measurements (as our PCAR measurements)

a further distinction has to be made depending on the size of

the contact d in comparison to the elastic and inelastic elec-

tronic mean free path, lE and lin, respectively. In the ballistic

regime lE >d one finds n=1, whereas n=2 in the diffusive

regime lE <d<lE (the thermal regime, lE <d, is not of inter-

est here since all spectral information is lost). Tunneling

experiments can also be described by Eq. (1) and n=2 and

correspond to large values of Z.

From the band-structure calculations we find very differ-

ent vF for the two spin channels. As a result, the calculated

spin polarization is reduced as the exponent n by which vF

enters into Eq. (1) increases; we calculate P0=0.996,

P1=0.968, and P2=0.765. This behavior places emphasis on

the fact that the high value of P, for the skutterudites stems

from the almost completely spin-polarized DOS at E; how-

ever, reduced by the fact that the spin band with lower

(higher) DOS has the higher (lower) Fermi velocity.

Comparing the experimentally obtained values of the

transport spin polarization (67% for KFe4Sb12) with the the-

oretical calculations in different regimes of transport we ob-

serve that though we fitted the spectra using a theory in the

ballistic limit, the extracted P values are in better agreement

with the predictions in the diffusive regime (76.5%). How-

ever, it should be noted that the spin polarization as obtained

from band-structure calculations does not include several

factors that are detrimental to a large transport spin polariza-

tion. First, the weak itinerant ferromagnetic nature of the

filled skutterudites is associated with large spin

fluctuations9,10,28 that would reduce the spin polarization

from its theoretical value. The presence of strong ferromag-

netic fluctuations in these compounds was already indicated

by the nonsaturating magnetization. Since the high field

magnetization value (when spin fluctuations are quenched) is

the one corresponding to band-structure calculations, a crude

correlation between magnetization and spin polarization

would suggest a 50% decrease in the spin polarization aris-

ing from this effect alone. Second, it has been seen in several

compounds29 that P; of the surface can be reduced with re-

spect to its bulk value. In addition, spin-orbit coupling in the

ferromagnet, although small in our case, reduces the spin

split region originate predominantly from Fe-3d hybridized

with the Sb-5p states (see Fig. 3). We find an almost fully

polarized DOS at the Fermi level E for KFe4Sb12 [see Fig.

3(a)]. The DOS contribution in the spin-up channel can be

assigned mainly to two bands (Fermi surfaces) of almost

pure Fe-3d character [see Fig. 3(b)]. There is only one band

of strongly mixed Sb-5p–Fe-3d character crossing E in the

spin-down channel [see Fig. 3(b)]. Due to its high value of

vF=0.3 × 106 m s−1, this band makes only a tiny contribu-

tion to the number of states at E.

In the case of spin polarization (Pn) measurements it is

imperative to bear in mind that in addition to the DOS at E,

N(EF), also the Fermi velocity vF may influence the obtained

value of Pn. Pn may be defined by26,27

\[
P_n = \int \frac{N_i(E_F)v_F^n dS}{\int N_i(E_F)v_F^n dS + \int N_i(E_F)v_F^0 dS},
\]

where the integrals are taken over all Fermi surfaces and

the arrows distinguish the two spin channels. The exponent

n is determined by the applied experimental technique

(at least in the case of P; ≠ 1): Only in the case of spin-resolved photoemission does Eq. (1) simplify to a form

P_0=(N↑−N↓)/(N↑+N↓) solely determined by the DOS at E.

This value can, of course, also be obtained from band struc-

ture calculations. For our KFe4Sb12 the spin polarization

amounts to P0=99.6%, a value very similar to the one re-

ported for the isovalent Na compound.10 In the case of ele-

tronic transport measurements (as our PCAR measurements)

a further distinction has to be made depending on the size of

the contact d in comparison to the elastic and inelastic elec-

tronic mean free path, lE and lin, respectively. In the ballistic

regime lE >d one finds n=1, whereas n=2 in the diffusive

regime lE <d<lE (the thermal regime, lE <d, is not of inter-

est here since all spectral information is lost). Tunneling

experiments can also be described by Eq. (1) and n=2 and
correspond to large values of Z.

From the band-structure calculations we find very differ-

ten vF for the two spin channels. As a result, the calculated

spin polarization is reduced as the exponent n by which vF

enters into Eq. (1) increases; we calculate P0=0.996,

P1=0.968, and P2=0.765. This behavior places emphasis on

the fact that the high value of P, for the skutterudites stems

from the almost completely spin-polarized DOS at E; how-

ever, reduced by the fact that the spin band with lower

(higher) DOS has the higher (lower) Fermi velocity.

Comparing the experimentally obtained values of the

transport spin polarization (67% for KFe4Sb12) with the the-

oretical calculations in different regimes of transport we ob-

serve that though we fitted the spectra using a theory in the

ballistic limit, the extracted P values are in better agreement

with the predictions in the diffusive regime (76.5%). How-

ever, it should be noted that the spin polarization as obtained

from band-structure calculations does not include several

factors that are detrimental to a large transport spin polariza-

tion. First, the weak itinerant ferromagnetic nature of the

filled skutterudites is associated with large spin

fluctuations9,10,28 that would reduce the spin polarization

from its theoretical value. The presence of strong ferromag-

netic fluctuations in these compounds was already indicated

by the nonsaturating magnetization. Since the high field

magnetization value (when spin fluctuations are quenched) is

the one corresponding to band-structure calculations, a crude

correlation between magnetization and spin polarization

would suggest a 50% decrease in the spin polarization aris-

ing from this effect alone. Second, it has been seen in several

compounds29 that P; of the surface can be reduced with re-

spect to its bulk value. In addition, spin-orbit coupling in the

ferromagnet, although small in our case, reduces the spin

FIG. 3. (Color online) Calculated density of states (DOS) and Fermi surfaces for KFe4Sb12: (a) Total DOS and partial Fe-3d and Sb-5p contributions. (b) DOS resolved for the individual bands (band numbers are according to the basis set provided in the text) relevant at EF. The spin-down band 176 has a nonvanishing DOS at EF (cf. the dashed line that represents a factor of 10 magnification). (c) Fermi surfaces for the most contributing spin-up bands 173 (left) and 174 (right). The color coding indicates the Fermi velocities vF.
polarization at the Fermi level. Third, even if the contacts were in the diffusive regime, this fitting should not yield appreciably different values of the transport spin polarization from the given value assuming a ballistic regime. It has been shown30 that fitting a spectra from the diffusive regime of point contact by a ballistic model yields approximately the same value of the transport spin polarization (within $\sim 3\%$). An estimate of the lower bound of the mean free path within a crystallite of KFe\textsubscript{4}Sb\textsubscript{12}, using experimental Hall effect results in a free-electron model, yields 18 nm. Therefore, it is possible that our point contacts with the polycrystalline skutterudite samples were close to the diffusive limit. Considering all these factors the observation of 67\% spin polarization in KFe\textsubscript{4}Sb\textsubscript{12} is indeed surprising.

The key to robustness of the transport spin polarization against these detrimental effects may indeed lie in the fact that P, in this material is primarily governed by the DOS of the majority (spin-down) channel that is very small over a relatively large energy range close to E_F. This renders P, less sensitive not only to fluctuation effects but also with respect to impurity scattering, an important aspect for potential applications.

In conclusion, we have demonstrated by point-contact Andreev reflection measurements large values of transport spin polarization in KFe\textsubscript{4}Sb\textsubscript{12} ($P \approx 67\%$) and NaFe\textsubscript{4}Sb\textsubscript{12} ($P \approx 60\%$). These results are in line with band-structure calculations that link the large P, to a negligible DOS at E_F in the spin-down channel. The huge DOS at E_F in the minority (spin-up) channel renders these compounds ideal candidates for spectroscopic investigations. Moreover, the filled skutterudites constitute an interesting new class of materials with large potential for spin transport applications.

We are indebted to N. Reinfried, S. Mukhopadhyay, V. Bagwe, and S.P. Pai for assistance. G.S. acknowledges the TIFR Endowment Fund for partial financial support. H.R. is supported by the Emmy-Noether Program, and J.A.M. by the Alexander von Humboldt Foundation.

16. This is different from the case of, e.g., La$_{0.7}$Sr$_{0.3}$Mn$_3$O where the main difference in transport spin polarization P, stems from a strong disparity of the Fermi velocities of the two spin channels and hence renders P, strongly susceptible to disorder (see also Ref. 27).
21. It was shown that incorporating an arbitrary value of Γ can result in ambiguities in the extracted value of P; see, e.g., Y. Bugoslavsky et al., Phys. Rev. B 71, 104523 (2005).
22. Alternatively, it has also been suggested that the dependence of P, and Z is an outcome of wrongly estimating the superconducting energy gap while fitting the PCAR spectra. In that case, however, one expects a systematic variation of P, with the best fit values of Δ, a feature that we do not observe in our experiments. For more details, see Ref. 30.
29. See, e.g., J. W. Freeland et al., Nat. Mater. 4, 62 (2005), and references therein.