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The formal setting : PAC Learning (Valiant, '84)

o Consider the Binary Classification Problem : We have m pairs of labeled training
data {(x;, i)}, where x; € X' are called features and y; € Y = {0, 1} are their

labels. Examples:

e x;'s are pixels (encoding of an image) and y;’s are labels {cats, dogs }.

o x;'s are ASCII encoding of emails and y/s are the labels {spam, not spam }.

x;'s are medical data (ECG,EEG, CT Scan etc) and y;'s are whether a patient has a
certain disease or not.

@ Assumption 1: The training data is sampled i.i.d. from an unknown distribution
px(x).

@ Assumption 2: The input x and the output y are related by an unknown
deterministic function g*, i.e., y = g*(x), Vx.

o Assumption 3: Although we don't know g*, it is known that g* lies in a given
function class C (Concept Class).

For any function (hypothesis) ¢ : X — Y in the class C, define its error-rate

ey = P(p(X) # g7(X))

Problem (The Learning Problem)

For any given €,6 > 0, upon observing m training samples, select a hypothesis 1) € C
such that,

Pley >€) <6
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Sample Complexity of Learning : Finite Function Class

Algorithm (Empirical Risk Minimization (ERM)): Simply output a function ¢ € C
which agrees on the training data, i.e., ¥(x;) = y;, i =1,2,..., m.

Theorem (Finite Concept Classes are Learnable)

If |C| < oo, then ERM requires m = % In % samples to learn, irrespective of the

underlying distribution px(-) and the optimal hypothesis g*.

The above theorem tells that by minimizing the empirical risk, irrespective of the
underlying unknown distribution, we can bound the true risk w.h.p.

Proof.

For any hypothesis f € C, define its error-region &y, i.e., the set of inputs where it
disagrees with the true function g*

& ={x e X:f(x) #g"(x)} 1)
Each error-region has an error-rate er associated with it
€f = PE{ (2)

Note that error-rate is implictly computed using the unknown distribution px() of the
samples.
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Proof contd.

Now define the set of Bad hypotheses B: hypotheses which have error-rate at least €
B={feC:e >¢€}

Hence, for any f € B, we have P(f(x) # g*(x)) > e.

Now let us compute the probability that a bad hypothesis f € B is chosen by ERM.
Note that, ERM will choose the function f only if the hypothesis agrees with g* on
the training data.

Thus, probability that f € B is chosen

P(ERM=f)<(1—¢)"
Using union-bound, probability that any bad-hypothesis is chosen:

P(ERM € B) < > P(ERM = f) < [B|(1 — €)" < [C|(1 — €)™ < [Cle™ ™
feB

Thus, if we take m number of training samples such that:

1 |C
[Cle™™¢ <4, ie, m>=lIn u,
€ é
the chosen hypothesis is Good w.p. at least 1 — 4. W
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Sample Complexity of Learning : Infinite Function Class

Clearly, the above proof does not extend to the important case when |C| = oo, (e.g.,
when C is set of all linear, polynomial functions etc.).

In a breakthrough paper in '95, Vapnik and Chervonenkis introduced the concept of
VC-dimension associated with an arbitrary function class C.

Definition (Shattering)

Suppose that there exists some set S of k points S = {x; € X,i =1,2,...,k} such
that we can select a hypothesis f € C which evaluates to any given binary label on this
set of points. Then the set S is said to be shattered by C.

VC dimension of the function class C is defined as the maximum cardinality of the set
S which can be shattered by C.
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VC-dimension : Examples

@ VC dimension of the class C of 2D halfspaces is 3.

3 points shattered 4 points impossible

o In general, VC dimension of n-D hyperplanes is n+ 1.

o Consider the class C of axis-aligned rectangles. Claim: VC dimension is > 4.

o © o
o
o d ° o
o 0 9 3
o ®
o ° °

Figure 1: Proving that rectangle concept space shatters at least 4 points

Exercise: Show that VC dimension < 5
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Sample Complexity

Theorem (Learning Theorem)

To learn a function class C of VC-dimension d with the usual parameters (e, d), it is
necessary and sufficient to sample m data points, where m = @(%(d + Iog(%))

Compare with finite function class result that we proved : VCain ~ log(|C]).
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Linearly Separable Function Class: Perceptron Algorithm

In this case, we have C = {1(wx > 0),w € R"}.

P(x) = L(wo + wTx >0)

Training Algorithm:

Awl.kJrl — n(yk — whxF)x;, whtt — wk 4 Awkt! 3)
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Neural Networks

o A neural network is a layered DAG G(V, E) with one input layer, one output layer
and at least one hidden layer.

o Each edge (/,/) has a tunable real valued weight w;.

@ The vertices linearly combines the input and returns the sign (1) of the input.

Input| Hidden Qutput
layer layer layer
(Vo) (W) (V2)

o O
O
(9

constant — g

A neural net of depth 2
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Power of Neural Nets

Theorem (Universality of Neural Nets)

For any n, there exists a neural network of depth 2 such that it can implement any
function f : {£1}" — {£1}.

Although the above theorem seems very impressive, the power of neural networks
comes at a cost.

Theorem (Complexity of Neural Nets)

Let s(n) denote the size (number of vertices) of a depth 2 neural net which can
implement any boolean function of size n. Then s(n) is exponential in n.

Thus, neural nets of limited size has limited power. In particular we have the following
result:

Theorem (VC dimension)

The VC dimension of any neural network G(V, E) with m edges is O(mlog m).

The above theorem should not surprise as any neural network has m tunable weights,
thus it is expected that "dimension” of the network should grow linearly in m.
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Training a Neural Net

By training a neural network, we mean adjusting the weight parameters w of edges
such that the training error is minimized (ERM).

Theorem (Hardness of Training)

Consider a depth 2 neural network with n input nodes and one output node and at
most 4 nodes in the hidden layer. Then it is NP-hard to train the network optimally.

Practical considerations:

o In practice, neural networks are trained (sub-optimally) by Stochastic Gradient
Descent (SGD) algorithm:

o GD :uses Vy (X0, lyi — fw(x,-)\z), SGD : uses Vi |yi — fuw(x)|%

o Gradient of the overall cost function is calculated efficiently by an algorithm
called backpropagation.
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SGD for Training a Neural Network

SGD for Neural Networks

parameters:

number of iterations 7

step size sequence 1,72, ..., 7

regularization parameter A > 0
input:

layered graph (V, E)

differentiable activation function o : R — R
initialize:

choose wl) € RI¥| at random

(from a distribution s.t. w(l) is close enough to 0)

fori=1,2,...,7

sample (x,y) ~D

calculate gradient v; = backpropagation(x,y,w, (V,E), o)

update w1 = wl® — g (v; + Aw(®))
output:

W is the best performing w¥ on a validation set

Examples: http://bit.ly/2dCZYKw
16 /37


http://bit.ly/2dCZYKw

PAC learning, Neural Networks and Deep Learning

Deep Learning

Outline

© Deep Learning

17/37



PAC learning, Neural Networks and Deep Learning

Deep Learning

Deep Neural Networks

Deep Neural networks are Neural networks with many hidden layers.

Theoretical advantage for deep learning : Obvious as it increases the learning
capacity (increased VC-dimension of the function class C).

History : Was tried in 90’s with limited success, adding more layer yielded
marginal performance gain.

o Reason : Was hard to train with backpropagation : stuck in local optima.

Idea 1: Keep many layers (6 — 7) but make connections sparse (Convolutional
Network, LeCun '98)

o Less number of parameters and hence easier to train by backpropagation.
Idea 2: Change the non-linearity to ¥(x) = max{0, x} (a.k.a. Linear Rectified
Units (LRU), ImageNet, Hinton '12).

o Was observed to be several times faster in training than convolutional network.
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Why it works?

Nobody knows exactly. It is likely due to the following reasons:
@ Local Minimas are as good as global minimas with proper regularization.

@ SGD is able to find a “good solution” quickly [Choromanska, '15]. Can be
understood using concepts from Statistical Physics.
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