Title :

Enzymes: an Emerging Puzzle of Mechanobiology and Active Matter


The traditional view that enzyme kinetics is only a matter of catalyzing chemical reactions is challenged by recent experiments and theory showing that catalysis enhances enzyme mobility.  This is significant to programming spatio-temporal patterns of molecular response to chemical stimulus. This talk will report that the enhanced diffusivity of enzymes is a “run-and-tumble” process analogous to that performed by swimming microorganisms, executed in this situation by molecules that lack the decision-making machinery of microorganisms. One consequence is that enzymes migrate in the direction of lesser reactant concentration when they turn over substrate; they display “anti-chemotaxis.” This run-and-tumble process offers the possible biological function to homogenize product concentration, which could be significant in situations when the reactant concentration varies from spot to spot. Attempts will be made to place these and our related recent findings in the context of larger puzzles in the active matter intellectual community. 

About the Speaker:

Steve Granick is a member of the U.S. National Academy of Sciences and American Academy of Arts and Sciences. Among his other major awards are the Paris-Sciences Medal, APS national Polymer Physics Prize, and ACS national Colloid and Surface Chemistry Prize. Holding and having held Honorary and Visiting Positions at multiple universities in Europe and Asia, he has core experience in science globalization.