Pseudorandomness

PROBLEM SET 2

Due date: September 22nd, 2018

Instructions

- 1. The problem set has 4 questions with a total score of 100 points.
- 2. You are welcome to collaborate with other classmates. But if you do, please mention who all you collaborated with.
 - I'd suggest you discuss only after you have spent enough time thinking about the problems independently.
- 3. Solutions are expected as a LATEX document. You may use this very file by obtaining the source files from course webpage.
- 4. The deadline is **22nd September 2018**, **2359 hrs IST**. For each day of delay, you lose **7 points** of your total score in this assignment. So if you plan to delay, be smart about it.

QUESTIONS

Question 1. (Spectrum of a tree) Let T_d be the undirected infinite d-ary tree. This, in some sense, is the *best d*-regular vertex expander. In this problem we will try to compute its spectrum. Recall that for a finite graph d-regular undirected graph G, we defined $\lambda(G)$ as

The factor of two is because each edge is counted twice in

$$\lambda(G) = \max_{x \perp u} \left| \frac{x^T A x}{x^T x} \right| = \left(\frac{1}{d}\right) \max_{x \perp u} \left| \frac{2 \sum\limits_{(i,j) \in E} x_i x_j}{\sum x_i^2} \right|$$

where A is the normalised adjacency matrix for G. For an infinite graph such as T_d , we shall define

$$\lambda(T_d) = \left(\frac{1}{d}\right) \sup_{\substack{x \in \mathbb{R}^{\infty} \\ \sum_{i} x_i^2 < \infty}} \left| \frac{2 \sum_{(i,j) \in E} x_i x_j}{\sum_{i} x_i^2} \right|.$$

(We do not need to worry about the vector 1 here since it does not have finite norm.)

- 1. **[10 points]** Prove that $\lambda(T_d) \leq \frac{2\sqrt{d-1}}{d}$. (Hint: You might want to use the fact that, for any $\alpha > 0$, we have $2|x_ix_j| \leq \left(\alpha x_i^2 + \frac{x_j^2}{\alpha}\right)$.)
- 2. **[10 points]** Prove that $\lambda(T_d) = \frac{2\sqrt{d-1}}{d}$ by showing that, for every $\epsilon > 0$, there is a vector vector $x \in \mathbb{R}^{\infty}$ of bounded norm such that

$$2\left|\sum_{(i,j)\in E}x_ix_j\right|\geq (2\sqrt{d-1}-\epsilon)\left(\sum_ix_i^2\right).$$

Question 2. (Problem 4.8 in Vadhan's manuscript) Let \mathbb{F} be a finite field. Consider the following graph G whose vertex set is \mathbb{F}^2 and edges set E defined as

$$E = \{((a,b),(c,d)) : ac = b+d\}.$$

One way to interpret this is the point (a, b) is connected to all points (c, d) on the line y = ax - b.

- 1. **[10 points]** Show that G is $|\mathbb{F}|$ -regular and $\lambda(G) \leq \frac{1}{\sqrt{|\mathbb{F}|}}$. (Hint: Might be easier to understand G^2 .)
- 2. [5 points] Starting with this, and using the graph operations seen in class, show that you can construct a $(D^8, D, 1/8)$ -spectral expander for some suitably large constant D.

Question 3. In this problem you would be deriving the Chernoff bounds for expanders.

1. **[5 points]** Let G = (V, E) be an undirected graph d-regular and let A be its (unnormalised) adjacency matrix. For any function $f: V \to \mathbb{R}$ on the vertices, define the diagonal matrix D_f whose (v, v)-th entry is f(v). When we say ρ is an s-t path of length k, we shall treat $\rho = (v_0, \ldots, v_k)$ such that $v_0 = s$, $v_k = t$ and $(v_i, v_{i+1}) \in E$ for each i. Suppose $W_{s,t}$ is defined as

$$W_{s,t} = \sum_{\substack{
ho ext{ is an } s ext{ to } t \\ ext{paths of length } k}} \prod_{i=0}^k f(
ho(i)).$$

Show that $W_{s,t} = e_s^T (D_f A)^k D_f e_t$, where e_s and e_t are the standard basis vectors with a 1 at position s and t respectively (and zero everywhere else).

2. **[5 points]** For a function $f: V \to [0,1]$ and a positive integer k, consider the random variable X that takes the value $\sum_{i=0}^k f(v_k)$ where (v_0, \ldots, v_k) is a uniformly random path of length k in G.

Let $0 \le r \le 1$ be some parameter. Express $\mathbb{E}[e^{rX}]$ linear algebraically.

3. **[10 points]** If *G* is an (n, d, λ) -expander and $\mu = \mathbb{E}[f]$, show that

$$\mathbb{E}[e^{rX}] \le e^{(\mu+\lambda)rk + O(r^2k)}.$$

(Hint: You might want to use the matrix decomposition for the normalized adjacency matrix for G, and also the fact that $e^x \le 1 + x + O(x^2)$ when for $|x| \le 1$.)

4. **[5 points]** Complete the proof of the Chernoff's bound on a λ -expander.

$$\Pr\left[X - \mu k \ge (\lambda + \epsilon) \cdot k\right] \le e^{-\Omega(\epsilon^2 k)}.$$

Question 4. (Modified form of Problem 4.5 in Vadhan's manuscript) Suppose $f: \{0,1\}^m \to \{0,1\}$ is some function and $\mu = \mathbb{E}_x[f(x)]$. An (ϵ, δ) -sampler is a randomized algorithm that queries f at various points and outputs some estimate $\hat{\mu}$ with the property that

$$\Pr[|\hat{\mu} - \mu| > \epsilon] \le \delta.$$

We are primarily interested in two parameters of such samplers — how many queries did it make, and how many random bits did it use. For this entire problem, assume that we have a *strongly-explicit* $(2^m, d, 0.5)$ -spectral expander for some constant d.

1. **[10 points]** Using expanders, show how one can obtain an (ϵ, δ) -sampler that makes at most $O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$ queries and uses at most

$$m + O\left(\frac{\log(1/\epsilon)}{\epsilon^2} \cdot \log \frac{1}{\delta}\right)$$
 random bits.

2. **[10 points]** Suppose we have an $(\epsilon, (1/8))$ -sampler \mathcal{S} that makes Q queries and uses R random bits. Consider the following "median of averages sampler" built from \mathcal{S} :

Run the sampler S for t independent trials to obtain $\hat{\mu_1}, \dots, \hat{\mu_t}$. Output the *median* of these estimates.

Prove that this new sampler will be an (ϵ, δ) -sampler if $t = O\left(\log \frac{1}{\delta}\right)$.

3. [20 points] Construct an (ϵ, δ) -sampler that makes at most $O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$ queries and uses at most

$$O\left(m + \log \frac{1}{\epsilon} + \log \frac{1}{\delta}\right)$$
 random bits.

(Hint: Recall the sampler using pairwise independence. Can we work with median of $\it correlated$ estimates in (2)?)